BIDENTATE, MONODENTATE AND BRIDGING THIOCARBOXAMIDO COMPLEXES OF RHODIUM AND IRIDIUM; THE X-RAY STRUCTURE DETERMINATION OF $\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}$

A.W. GAL *, H.P.M.M. AMBROSIUS, A.F.M.J. VAN DER PLOEG and W.P. BOSMAN
Department of Inorganic Chemistry, Catholic University of Nijmegen, Toernooiveld, Nijmegen (The Netherlands)

(Received October 10th, 1977)

Summary

$\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ reacts with " $\mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}$ ", $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, to give cis- and trans- $\left.-\mathrm{IrCl}_{2}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}, \operatorname{trans}-\left[\operatorname{IrCl}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$and trans- $\left[\mathrm{IrH}\left(\eta^{2}-\mathrm{SCNMe}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$, respectively (with cis and trans referring to the relative position of the PPh_{3} groups). Dehydrohalogenation of trans- $\left[\mathrm{IrH}\left(\eta^{2}-\mathrm{SCNMe} 2\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$by $\mathrm{Et}_{3} \mathrm{~N}$ results in trans-$\operatorname{Ir}\left(\eta^{1}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and the dimeric $\left[\operatorname{Ir}\left(\mu-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]_{2}$. Dehydrohalogenation of trans-[$\left.\left.\mathrm{IrH}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$in the presence of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ gives the bis $\left(\eta^{2}\right.$-thiocarboxamido) complex [$\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe} \mathrm{e}_{2}\right)_{2}(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{Cl}^{-}$.

In the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ displacement of CO occurs and $\operatorname{RhCl}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ is formed. This complex can also be prepared from $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ and $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$.

The X-ray structure analysis of $\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}-$ shows both SCNMe_{2} ligands to be planar and coordinated via C and S , with bond distances and angles comparable to those in other $\eta^{2}-$ SCNMe $_{2}$ complexes. As the $\mathrm{C}-\mathrm{Ir}-\mathrm{S}$ angles within both $\mathrm{IrSCNMe}{ }_{2}$ units are small (43 ${ }^{\circ}$), the coordination geometry around the iridium is distorted octahedral.

Introduction

N, N-Dialkylthiocarboxamide (SCNR_{2}) [1,2] and dithioalkyl ester (SCSR) [3-7] complexes have been prepared in the last decade via several routes. For SCNR $_{2}$, coordination via C (η^{1} coordination), coordination via C and S to give a three membered $\mathrm{M}-\mathrm{C}-\mathrm{S}$ ring ($\boldsymbol{\eta}^{2}$ coordination), and bridging via C and S (μ coordination) have been reported. For SCSR, up to now only η^{1} coordination and η^{2} coordination have been found.

X-ray crystallographic data have been obtained for η^{2}-SCSMe [5], η^{2}-SCNMe ${ }_{2}$ [8,9], $\eta^{2}-\mathrm{SCN}(\mathrm{n}-\mathrm{Pr})_{2}[10]$, and $\mu-\mathrm{SCNMe}_{2}$ [11]. The geometry of η^{2}-SCSR and
TABLE 1
ANALYTICALDATA (theoretical valuos in parenthoses)

Code	Compound	Analysls (Found (caled.) (\%))				Mol.Vt.
		C	II	H	S	
trame-1	trand $-\mathrm{IrCl}_{2}\left(\eta^{2} \cdot \mathrm{SCNMO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}$	44.5	3.4	1.8		
		(45.8)	(9.6)	(1.3)		
I!(Cl')	trans $-\left[\mathrm{IrCl}\left(\eta^{2} \cdot \mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	66.1	4.2	1,8		
		(56.2)	(4.2)	(1.4)		
$\operatorname{III}\left(\mathrm{Cl}^{-}\right)$	$\left(\mathrm{rans}-\left[\mathrm{IrH}\left(\eta^{2}-\mathrm{SCNMO}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}\right.$	55.9	4.6	1.4		
		(60.3)	$(4,3)$	(1,6)		
V	$\left[\mathrm{Ir}\left(\mu-\mathrm{SCNMa}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]_{2}$	47.6	4.0	2.1	5.4	1144^{6}
		(46.2)	(3.7)	(2.4)	(5.6)	(1141)
$\mathrm{VII}\left(\mathrm{BF}_{4}^{-}\right)$	$\left[\mathrm{Ir}\left(\eta^{2} \cdot \mathrm{SCNMc}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}$	40.1	3.6	3.7		
		(40.3)	$(3,6)$	(3,8)	\%	
1 X	$\mathrm{RhCl}\left(\eta^{2} \cdot \mathrm{SCNMa}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CIICl}_{3}$	43.1	4.0	3.0	0.3	710 c
		(43.1)	(4.0)	(4.0)	(2.2)	(098)

Fig. 1. η^{2}-Allene and the "pseudo-allenes" $\eta^{2}-\mathrm{CS}_{2}, \eta^{2}$-SCSMe, η^{2}-SCNR and η^{2}-SCNRMe.
$\eta^{2}-$ SCNR $_{2}$ is closely related to that observed for $\eta^{2}-\mathrm{CS}_{2}$ complexes $[12,13]$. Methylation of $\eta^{2}-\mathrm{CS}_{2}$ and η^{2}-SCNR complexes has been reported to give η^{2}-SCSMe. and η^{2}-SCNRMe complexes [2,5,6] (Fig. 1).
$\eta^{2}-\mathrm{CS}_{2}$ and η^{2}-SCNR, as well as their alkylated forms, can be called pseudoallenes [37], because of the analogy of their coordination geometry to that of η^{2}-allene [38] (Fig. 1). In defining the oxidation state of the central metal, $\eta^{2}-\mathrm{CS}_{2}$, η^{2}-SCSR, η^{2}-SCNR and $\eta^{2}-$ SCNR $_{2}$ can be considered either as monodentate two electron π-donors ($\mathrm{S}=\mathrm{C}=\mathrm{S}, \mathrm{S}=\mathrm{C}=\mathrm{SR}^{+}, \mathrm{S}=\mathrm{C}=\mathrm{NR}, \mathrm{S}=\mathrm{C}=\mathrm{NR}_{2}{ }^{+}$) or as bidentate four electron σ-donors ($\overline{\mathrm{S}}-\overline{\mathrm{C}}=\mathrm{S}^{2-}, \overline{\mathrm{S}}-\overline{\mathrm{C}}=\mathrm{SR}^{-}, \overline{\mathrm{S}}-\overline{\mathrm{C}}=\mathrm{NR}^{2-}, \overline{\mathrm{S}}-\overline{\mathrm{C}}=\mathrm{NR}_{2}{ }^{-}$). The latter formalism is used for η^{2}-SCNMe ${ }_{2}$ in this article.

In an attempt to find out how the mode of coordination of SCNMe_{2} is influenced by the oxidation state of the central metal and the nature of the other ligands present, we prepared iridium(III) and iridium(II) SCNMe_{2} complexes via oxidative addition of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ to " $\mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}$ ", $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, and compared these with the products obtained from the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$. The coordination of SCNMe_{2} in some of the complexes is compared with that in corresponding SCSR ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}$) complexes, reported before. The preparation and geometry of bis ($\eta^{2}-\mathrm{SCNMe}_{2}$) complexes, not known for CS_{2} or SCNR, is described.

A. Synthesis and characterization of the complexes

Experimental

IR spectra were obtained with Perkin-Elmer 257 and 283 spectrophotometers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian T-60 and a Bruker WH-90-FT NMR spectrometer. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Varian XL-100-FT. at 40.5 MHz , using the deuterated solvent as internal lock.
C, H and N analysis of the air sensitive $\left[\operatorname{Ir}\left(\mu-\mathrm{SCNMe}_{2}\right)(\mathrm{CO}) \mathrm{PPh}_{3}\right]_{2}, \mathrm{~S}$ analyses and molecualr weight determinations were performed by Alfred Bernhardt, Microanalytisches Laboratorium, Elbach über Engelskirchen, W.-Germany. The other analyses were performed by the microanalytical department of this university. Table 1 summarizes the analytical data.

The starting complexes $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$ [19], $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ [19], $\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}$ [20], $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ [19] and $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [36] were prepared according to literature procedures. $\operatorname{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}$ was prepared in situ from $\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}$ and $4 \mathrm{PPh}_{3}$ [35]. $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ was prepared according to [21]. The synthesis of the SCNMe $_{2}$ complexes from the $\mathrm{Rh}^{\mathbf{I}}$ and $\mathrm{Ir}^{\mathbf{I}}$ complexes was performed under nitrogen.

Mono($\eta^{2} \mathrm{SCNMe}_{2}$) complexes
cis-IrCl $l_{2}\left(\eta^{2} \mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\right.$ cis-I) $* .0 .22 \mathrm{mmol} \mathrm{Me} \mathrm{N}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{CL}$ was added to a solution of $0.10 \mathrm{mmol}\left[\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]_{2}$ and $0.40 \mathrm{mmol}^{\mathrm{PPh}} \mathrm{P}_{3}$ in 25 ml of benzene. After 15 min a brown-yellow precipitate of cis-I began to form. After $2 h$ the precipitate was filtered off.
trans-IrCl $2_{2}\left(\eta^{2}\right.$ SCNMe $\left._{2}\right)\left(\text { PPh }_{3}\right)_{2}-2$ CHCL $_{3}$ (trans-I). Slow crystallisation of cis-I from chloroform/n-hexane gave red crystals of trans-I. The presence of CHCl_{3} was confirmed by IR.
trans-[IrCl $\left(\eta^{2}{ }^{2} S C N M e ~ 2\right)(C O)\left(\mathrm{PPh}_{3}\right)_{2} I^{+} \mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{II}\left(\mathrm{Cl}^{-}\right)\right)$. A solution of 0.17 mmol $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ and $0.15 \mathrm{mmol} \operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in 20 ml of benzene was refluxed for six hours. II precipitated spontaneously as a white powder. The presence of $\mathrm{C}_{6} \mathrm{H}_{6}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR.
trans-IIrH $\left(\eta^{2}-S C N M e_{2}\right)(C O)\left(P_{3}\right)_{2} I^{+} \mathrm{Cl}^{-}\left(I I I\left(\mathrm{Cl}^{-}\right)\right) .0 .12 \mathrm{mmol} \mathrm{Me}{ }_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ was added to a solution of $0.10 \mathrm{mmol} \mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ in 15 ml of benzene. Stirring for 12 h resulted in a white precipitate of $\mathrm{III}\left(\mathrm{Cl}^{-}\right)$which proved to be a mixture of two isomers, IIIA and IIBB (see Results and discussion).
trans-IIrH $\left(\eta^{2}-S C N M e_{2}\right)(C O)\left(P \mathrm{Ph}_{3}\right)_{2} J^{+} B F_{4}^{-1}\left(I I I\left(B F_{4}^{-}\right)\right)$. Addition of several drops of 40% aqueous fluoroboric acid to a suspension of $I I A\left(\mathrm{Cl}^{-}\right)$and $I I B\left(\mathrm{Cl}^{-}\right)$ in acetone produced a colourless solution, from which the isomers IIIA and IIIB were precipitated as $\mathrm{BF}_{4}{ }^{-}$salts by addition of water. IIIA and IIIB were separated via fractional crystallisation from dichloromethane/n-hexane, from which $\operatorname{IIIB}\left(\mathrm{BF}_{4}{ }^{-}\right)$crystallizes first.
(μ - and $\eta^{1}-\mathrm{SCNMe}_{2}$) complexes
$\left[\operatorname{Ir}\left(\mu-S C N M e_{2}\right)(C O)\left(P P h_{3}\right)\right]_{2}(V)$ and $\operatorname{Ir}\left(\eta^{1}-S C N M e_{2}\right)(C O)\left(P P h_{3}\right)_{2}$ (IV). Upon addition of a slight excess of $E t_{3} N$ to a stirred suspension of 0.20 mmol of III (Cl^{-}) in 10 ml of benzene, the colour changed via yellow and orange-red to purple. After four hours $\mathrm{III}\left(\mathrm{Cl}^{-}\right)$has almost completely dissolved and $\mathrm{Et}_{3} \mathrm{NHCl}$ has precipitated. Filtration, addition of n-hexane and cooling gave purple-brown crystals of V. The complex is air-sensitive both in solution and in the solid state.

If the same reaction is performed in the presence of 6 mol of additional PPh_{3} per mol of Ir , a mixture of V and orange crystalline $\operatorname{Ir}\left(\eta^{1}{ }^{1} \mathrm{SCNMe} \mathrm{C}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (IV) is isolated. The IR absorptions of $\eta^{1}-\mathrm{SCNMe}_{2}$ in IV were obtained from the IR spectrum of this mixture.

Bis $\left(\eta^{2}{ }^{2}{ }^{2} \mathrm{CNMM}_{2}\right)$ complexes

$\left[\operatorname{Ir}\left(\eta^{2}{ }^{2} S C N M e_{2}\right)_{2}(C O)\left(P \mathrm{Ph}_{3}\right)\right]^{+} B F_{4}^{-}\left(V I I\left(B F_{4}^{-}\right)\right) .0 .25 \mathrm{mmol} \mathrm{Et} \mathbf{t}_{3} \mathrm{~N}$ and 0.22 mmol $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ were added successively to a suspension of 0.20 mmol of $\mathrm{III}\left(\mathrm{Cl}^{-}\right)$ in 25 ml of benzene. After stirring for $1.5 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{NHCl}$ was filtered off from the yellow solution. Addition of n-hexane resulted in a yellow precipitate, which was shown by IR to be a mixture of $\operatorname{IrCl}\left(\eta^{1} \mathrm{SCNMe}_{2}\right)\left(\eta^{2} \mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ (VI) and $\left[\operatorname{Ir}\left(\eta^{2}-S C N M e\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{Cl}^{-}\left(\mathrm{VII}\left(\mathrm{Cl}^{-}\right)\right.$).

Addition of several drops of 40% aqueous fluoroboric acid to a suspension of the yellow precipitate in aceton produced a colourless solution, from which a white precipitate of $\mathrm{VII}\left(\mathrm{BF}_{4}^{-}\right)$was obtained by addition of water. If the reaction of $\mathrm{HI}\left(\mathrm{Cl}^{-}\right)$with $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ was performed in benzene under reflux,

[^0]partial displacement of CO occurred, and a mixture of $\mathrm{VII}\left(\mathrm{Cl}^{-}\right)$and $\operatorname{IrCl}\left(\eta^{2-}\right.$ $\left.\mathrm{SCNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)$ (VIII, identified by IR) was obtained.
$R h C l\left(\eta^{2} \mathrm{SCNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \cdot \mathrm{CHCl}_{3}(I X)$ - (a) $0.20 \mathrm{mmol} \mathrm{Et}_{3} \mathrm{~N}$ and 0.32 mmol $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ were added successively to a stirred solution of 0.15 mmol RhH $\left(\mathrm{PPh}_{3}\right)_{4}$ in 15 ml of benzene. $\mathrm{Et}_{3} \mathrm{NHCl}$ and a yellow powder of $\mathrm{RhCl}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}-$ $\left(\mathrm{PPh}_{3}\right)$ precipitated simultaneously. After 2 h the precipitate was filtered off and washed with water (removal of $\mathrm{Et}_{3} \mathrm{NHCl}$). Recrystallization from chloroform/ n-hexane gave yellow crystals of IX. The presence of CHCl_{3} was confirmed by IR. In the solid state under the influence of light the colour of IX changed from yellow to orange. The observed change in colour did not result in a change in the IR spectrum. Because of this sensitivity to light, X-ray structure determination was not possible.
(b) Upon addition of $0.42 \mathrm{mmol} \mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ to a solution of 0.20 mmol $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ in 15 ml of benzene, the colour of the solution changed from yellow to red and back to yellow again within 15 min and a yellow precipitate of $\left.\mathrm{RhCl}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)$ was formed spontaneously. $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ could be isolated by addition of n-hexane.

Results and discussion

IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR parameters of the thiocarboxamido complexes are given in Tables 2 and 3.
$\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ reacts with $\mathrm{IrCl}\left(\mathrm{PPh}_{3}\right)_{2}$ (prepared in situ; see Experimental) in benzene to cis- $-\mathrm{IrCl}_{2}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(c i s-1)$. The cis-structure is indicated by the inequivalence of both PPh_{3} groups in the ${ }^{31} \mathrm{P}$ NMR spectrum (Table 3). In a polar solvent like CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ slow isomerisation to trans $-\mathrm{IrCl}_{2}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}\left(\right.$ trans-I) is observed. η^{2}-coordination of SCNMe 2 , via C and S , in both isomers, is inferred from the similarity of its IR absorptions to the absorptions of the SCNMe_{2} group in $\mathrm{RhCl}\left[\mathrm{SC}(\mathrm{S}) \mathrm{NMe}_{2}\right]\left(\eta^{2}-\mathrm{SCNMe}_{2}\right) \mathrm{PPh}_{3}$ and $\mathrm{RhCl}-$ [PhNC(S) NMe_{2}] $\left(\eta^{2}\right.$-SCNMe ${ }_{2}$) PPh_{3}, for which η^{2}-coordination has been confirmed by X-ray structure analyses [8].

In the analogous reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$, trans- $\mathrm{RhCl}_{2}-$ ($\eta^{2}-\mathrm{SCNMe}_{2}$) $\left(\mathrm{PPh}_{3}\right)_{2}$ is isolated (Tables 2 and 3). Corain et al. [15] have reported this complex (prepared by the same procedure) to be dimeric. Based on the IR absorptions of the SCNMe_{2} group and the monomeric molecular weight found by us (in CHCl_{3} : found 909, calcd. 945), we think this complex to be isostructural to trans-I and the related $\mathrm{RhCl}_{2}\left(\eta^{2}\right.$-SCSEt $)\left(\mathrm{PPh}_{3}\right)_{2}$ [4]. A trans position of the PPh_{3} groups in all three complexes is indicated by the ${ }^{31} \mathrm{P}$ NMR spectrum (Table 3).
$\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ reacts with $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ to give trans-[$\operatorname{IrCl}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$(II) in benzene. The course of the reaction is different from that observed for $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, where displacement of CO instead of Cl^{-}occurs to give trans- $\mathrm{RhCl}_{2}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$. The relative aptitude to displacement for $\mathrm{Rh}: \mathrm{CO}>\mathrm{Cl}^{-}$and for $\mathrm{Ir}: \mathrm{Cl}^{-}>\mathrm{CO}$ appears to be a general phenomenon in the oxidative addition of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ (see below). Interestingly, the II-related $\left[\operatorname{IrCl}\left(\eta^{2}-\mathrm{SCSMe}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$has been reported to be formed in the absence of additional Cl^{-}[6], whereas, in the presence of additional $\mathrm{Cl}^{-}, \mathrm{IrCl}_{2}$ (η^{1}-SCSEt)$(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ is found [4]. Therefore it seems that SCNMe_{2} is able to become

[^1]TABLE 8
${ }^{1} \mathrm{H}$ NMR AND ${ }^{31}$ p $\left\{1^{1} \mathrm{H}\right\}$ NMR PARAMETERS IN $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

[^2]$\boldsymbol{\eta}^{2}$-coordinated via displacement of Cl^{-}from iridium (III), whereas SCSMe is not. This higher tendency for η^{2}-coordination also has been observed for $\mathrm{Ru}(\mathrm{CO})_{2}-$ ($\left.\eta^{2} \mathrm{SCX}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{X}=\mathrm{SMe}, \mathrm{N}(p-$ tol $) \mathrm{Me})$ [7], and has been ascribed to higher Lewis basicity of S in $S C N R_{2}$ caused by stronger dative $p_{\pi}-p_{\pi}$-interaction with the central C-atom of NR_{2} compared to SR [9].

The product of the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)$, or $\mathrm{RhH}(\mathrm{O})$ $\left(\mathrm{PPh}_{3}\right)_{3}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ contains two $\eta^{2}-\mathrm{SCNMe}_{2}$ groups, which suggests a reaction route via two successive oxidative additions of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ to the

(IX)

Rh center (Scheme 1). CO displacement from $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ probably occurs in the oxidative addition of the first $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ molecule, as in the displacement of CO by $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ from $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$. If no $\mathrm{Et}_{3} \mathrm{~N}$ is present, reaction of $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ with HCl , eliminated after oxidative addition of the first $\mathrm{Me}_{3} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ molecule, occurs as a side reaction. This is indicated by the formation of $\mathrm{RhCl}_{2}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (via $\mathrm{RhH}_{2} \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\left.\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right)$ and $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (via $\left.\mathrm{RhH}_{2} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right)$, respectively. $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ reacts much slower with $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ than $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [15], so that no $\mathrm{RhCl}_{2}\left(\eta^{2} \mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ is formed in the latter case. In the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$ as well as $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, attempts to isolate the intermediate hydridochlororhodium(III) complex, or the intermediate $\mathrm{Rh}\left(\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{n}$, by keeping the concentration of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ low, failed. The stiuctural assignment of IX is based on analogy to [$\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})$ (PPh_{3}) I] (see below).

In the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, in contrast to the analogous reaction involving $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, CO remains in the coordination sphere and the intermediate hydrido complex $\left[\operatorname{IrH}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$(III) precipitates spontaneously in two isomeric forms (IIIA and IIIB, Scheme 2), which can be separated as BF_{4} - salts (by fractional crystallization, see Experimental). In the analogous dithiomethylester complex, $\operatorname{IrClH}\left(\eta^{2}-\right.$ SCSMe $)-$ (CO) $\left(\mathrm{PPh}_{3}\right)_{2}, \eta^{1}$-coordination occurs and Cl^{-}is not displaced from the coordination sphere [6]. In III, the equivalence of both PPh_{3} groups in the ${ }^{31} \mathrm{P}$ NMR spec-

Scheme 2. The reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$.
trum and the observed ${ }^{2} J(\mathrm{P}-\mathrm{H})$ in the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum indicate a trans-position of both PPh_{3} groups (Table 3) (values ranging from $12-17 \mathrm{~Hz}$ have been reported for ${ }^{2} J(\mathrm{P}-\mathrm{H})$ cis $\left.[23,24]\right)$. The low values of $\nu(\operatorname{Ir}-\mathrm{H})$ and $\tau(\operatorname{Ir}-\mathrm{H})$ in isomer B suggest H to be trans to C of the η^{2} SCNMe $_{2}$ group [25] (Tables 2 and 3). The relatively large trans-influence of this C -atom on $\nu(\mathrm{M}-\mathrm{Cl})$ and the $\mathrm{M}-\mathrm{Cl}$ distance has been reported before [1].

Reaction of III with $\mathrm{Et}_{3} \mathrm{~N}$ in benzene gives $\left[\operatorname{Ir}\left(\mu-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathrm{~V}$, Scheme 2) which can be isolated as brown-purple crystals. The assigned $\nu(\mathrm{C}=\mathrm{N})$ at $1503 \mathrm{~cm}^{-1}(\mathrm{~m})$ is clearly at lower position and intensity than $\nu(\mathrm{C}=\mathrm{N})$ observed at $1613-1576 \mathrm{~cm}^{-1}$ in the $\eta^{2}-\mathrm{SCNMe}_{2} \mathrm{Ir}^{(I I I)}$ complexes. $\delta\left(\mathrm{CH}_{3}\right)$ is lower also (1382 (m) compared to $1400-1410 \mathrm{~cm}^{-1}$ in $\eta^{2}-\mathrm{SCNMe}_{2}$). A new absorption is found at $1129 \mathrm{~cm}^{-1}$, and the absorption observed for the $\eta^{2}-\mathrm{SCNMe}_{2}$ complexes in the range $817-867 \mathrm{~cm}^{-1}$ and tentatively assigned to a $\mathrm{C}-\mathrm{S}-\mathrm{M}$ vibration is absent in this case (Table 2). The ${ }^{31} \mathrm{P}$ NMR spectrum demonstrates the equivalence of both PPh_{3} groups, in accordance with the proposed structure. The very low value of $\nu(\mathrm{CO})$, for a square planar iridium(1) complex [26], is in accordance with a position of CO trans to S of the $\mu-\mathrm{SCNMe}_{2}$ group. In $\operatorname{Ir}(\mathrm{X})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, $\nu(C O)$ is found at $1940-1950 \mathrm{~cm}^{-1}$ for $X=S R$ and SAr [27], whereas for $X=$ carbene, $v(\mathrm{CO})$ is observed at $1980 \mathrm{~cm}^{-1}$ [28]. The expected lowering cisinfluence on $\nu(\mathrm{CO})$ of the carbenoid C -atom in V , which has been reported before in iridium(I) and rhodium(I) carbene complexes [28,29], makes the observed $\nu(\mathrm{CO})\left(1930 \mathrm{~cm}^{-1}\right)$ a reasonable value. The structure suggested for V , is comparable to that suggested for $\left[\mathrm{Pt}\left(\mu-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPR}_{3}\right)_{2}\right]^{2+}$ and $\left[\mathrm{PdCl}\left(\mu-\mathrm{SCNMe}_{2}\right)-\right.$
$\left.\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}$ The latter has been shown by X-ray structure analysis to contain a six-membered $\mathrm{Pd}-\mathrm{S}-\mathrm{C}-\mathrm{Pd}-\mathrm{S}-\mathrm{C}$ ring in the boat form [14].

If the reaction of III with $\mathrm{Et}_{3} \mathrm{~N}$ in benzene is performed in the presence of one equivalent of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$, no dimeric V is observed, but instead a mixture of $\operatorname{IrCl}\left(\eta^{1}-\mathrm{SCNMe}_{2}\right)\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mathrm{VI})$ and $\left[\mathrm{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$ Cl^{-}(VII) is formed (Scheme 2). As can be seen from the IR spectrum, upon dissolving the mixture in a polar solvent like $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ immediately η^{2}-coordination and Cl displacement occurs in VI, so that only VII is observed (Scheme 2). In VI the IR absorptions of η^{1}-SCNMe 2 are clearly different from those of η^{2} - SCNMe $_{2}$. $\nu(\mathrm{C}=\mathrm{N})$ of $\eta^{\mathrm{i}} \mathrm{SCNMe}_{2}$ is lower in position and intensity than $\nu(\mathrm{C}=\mathrm{N})$ of $\eta^{2}-$ SCNMe $_{2}$ (1494 m and $1612 \mathrm{~s} \mathrm{~cm}^{-1}$, respectively). $\delta\left(\mathrm{CH}_{3}\right)$ is also somewhat lower for η^{i}-coordination (1366 and $1406 \mathrm{~cm}^{-1}$). As for μ-SCNMe ${ }_{2}$ in V, for η^{1}-SCNMe ${ }_{2}$ in VI an absorption is observed at $\sim 1130 \mathrm{~cm}^{-1}$ and no absorption in the range $817-867 \mathrm{~cm}^{-1}$. The absorption at $945 \mathrm{~cm}^{-1}$ is assigned to $\nu(\mathrm{C}=\mathrm{S})$, analogous to the assignment in $\mathrm{PtCl}\left(\eta^{1}-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ [14,30], and occurs at higher frequency than the absorption in the range for the $\eta^{2}-$ SCNMe $_{2}$ complexes (924-911 $\mathbf{c m}^{-1}$).

The formation of V and VII from IIIA and IIIB has been studied in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ into somewhat more detail. The ${ }^{31} \mathrm{P}$ NMR spectrum of a solution of III in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows the presence of IIIA and IIIB in a ratio 2/1. Upon addition of $E t_{3} \mathrm{~N}$, IIIA is immediately converted and the single resonance of V is observed ($\delta 11.6 \mathrm{ppm}$) together with a somewhat broadened resonance at $\delta-15.0 \mathrm{ppm}$, ascribed to the monomeric trans-Ir($\left.\eta^{1}-\mathrm{SCNMe} 2\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (IV, Scheme 2). Also a resonance of PPh_{3} is observed, broadened and somewhat shifted from its free resonance position, probably because of exchange with PPh_{3} in IV ($\delta\left(\mathrm{PPh}_{3}\right)$ rel. to TMP: .unshifted: +7.7 ppm ; observed: +6.4 ppm). IIIB is much slower dehydrohalogenated than IIIA to give the same products. If 2 mol of PPh_{3} per mol of Ir are added before addition of $E t_{3} \mathrm{~N}$, almost no V is observed, suggesting the existance of an equilibrium between IV and V. If 4 mol of PPh_{3} per mol of Ir are added to a concentrated solution of V in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, slow formation of IV is observed and after $2 \mathrm{~h} 75 \%$ of the dimer has been converted into IV. In the ${ }^{1} \mathrm{H}$ NMR the two broadened singlets observed for IV indicate hindered rotation around the $\mathrm{C}=\mathrm{N}$ bond as for V and the ($\left.\eta^{2}-\mathrm{SCNMe}\right)_{2}$) $\mathrm{Ir}^{\text {III }}$ complexes. In PtCl $\left(\eta^{1}-\mathrm{SCNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ also hindered rotation around the $\mathrm{C}-\mathrm{N}$ bond has been observed [14]. In the IR besides $\nu(\mathrm{CO})$ of $V\left(1930 \mathrm{~cm}^{-1}\right)$ also $\nu(\mathrm{CO})$ of IV is observed ($1950 \mathrm{~cm}^{-1}$). The occurrence of a new absorption at $940 \mathrm{~cm}^{-1}(\nu(\mathrm{C}=\mathrm{S})$) suggests η^{1}-coordination of the SCNMe_{2} group in IV. No other absorptions significantly different from those of V are observed. Upon addition of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ to the $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of IV and V, IV is completely converted into VII within 1 h , whereas resonances of V are still observed in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectrum at that time. If $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ is added to a solution of V in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, V has still not completely been converted after 2 h and, besides formation of VII, formation of other unidentified products is observed. So IV has been shown to be an intermediate in the reaction of $\mathrm{Me}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ with $\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ to VII (Scheme 2).

Conclusions

Starting from $\mathrm{M} \epsilon_{2} \mathrm{NC}(\mathrm{S}) \mathrm{Cl}$ and $\mathrm{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, products containing three different types of coordination for $\mathrm{SCNMe}_{2}\left(\eta^{2}, \eta^{1}\right.$ and μ) have been observed.

Within $\operatorname{IrCl}\left(\eta^{1}-\mathrm{SCNMe}_{2}\right)\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right), \eta^{1}$ - and $\eta^{2}-\mathrm{SCNMe}_{2}$ can clearly be distinguished by IR. The difference in IR absorption between $\mu-\mathrm{SCNMe}_{2}$ and $\boldsymbol{\eta}^{1}$-SCNMe ${ }_{2}$, coordinated to iridium(I) is less pronounced. The dimeric [Ir(μ-SCNMe 2) $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]_{2}$ is unprecedented in iridium(I) chemistry, and its airsensitivity makes investigation of its reactivity towards molecular oxygen worthwhile. Whereas η^{2}-coordination seems to be preferred by rhodium(III) and iridium(III), η^{1} and μ-coordination in a square planar complex seem to be preferred by iridium(I). This is similar to the observed preference for η^{1} and μ-coordination of palladium(II) and platinum(II) [14]. The isolated $\mathrm{Rh}^{\mathrm{III}}$-and $\mathrm{Ir}^{\mathrm{II}}$ (η^{2}-SCNMe $)_{2}$ complexes are the first examples in this category. In order to reveal the coordination geometry in these complexes, an X-ray structure analysis of $\left.\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}$was performed.

B. X-ray diffraction study of $\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}$

Experimental

$\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}$was recrystallized from dichloromethane/ methanol to give colourless crystals. A well formed crystal, with the dimensions $0.5 \times 0.4 \times 0.15 \mathrm{~mm}$ was selected for X-ray work. Weissenberg (Cu-K K_{α}) photographs indicated that the cell was monoclinic, the space group being $P 2_{1} / n$. Cell data, as determined from a least-square refinement of diffractometer readings for 24 reflections with $2 \theta>42^{\circ}$, using Mo- K_{α} radiation ($\lambda 0.71069 \AA$), are given in Table 4. Reflection data were collected on a NONIUS CAD-4 single crystal diffractometer employing monochromated Mo- K_{α} radiation. The "moving crystal, moving counter technique" was used. 6447 independent intensities were collected up to $\sin \theta / \lambda 0.65 \AA^{-1} .3858$ reflections were more than 3 times the standard deviation. The intensities of four standard reflections, each measured after every 15 reflections, showed a linear decrease up to 30%, due to the occurrence of severe radiation damage. The data were corrected for the decrease in intensity, for Lorentz and polarization effects, and for absorption ($\mu 51.52 \mathrm{~cm}^{-1}$, the absorption coefficients on the intensity were calculated in the range of 2.10 2.37).

Structure solution and refinement
The iridium atom was found from a three dimensional Patterson map. The remaining part of the structure was found by applying direct methods on normallised difference Fourier coefficients using the program DIRDIF.B [31]. The

TABLE 4
CELL DATA

```
Space group: P2, /n
a 9.730(2) A
b 21.151(3) A
c 15.281(2) A
\beta112.01(2) A
Z=4
d(calcd) 1.70 g cm
d(obs.) 1.69 g cm
```

resulting Fourier synthesis shows the positions of the sulfur, phosphorus and nine carbon atoms. The remaining non-hydrogen atoms were located on a difference Fourier map. The reflections with $I>3 \sigma$ were used in the refinement by full matrix least squares methods, allowing anisotropic vibration for iridium, sulfur, phosphorus and fluorine atoms. The quantity minimised was $\Sigma w\left(\left|F_{0}\right|-\right.$ $\left.k\left|F_{\mathrm{c}}\right|\right)^{2}$, with $w=\left[\sigma_{F}{ }^{2}+0.002 F_{\mathrm{o}}{ }^{2}\right]^{-1}$ and $\sigma_{F}=(F / 2 \Gamma)$. The hydrogen atoms were placed at calculated positions.

As demonstrated by the high value of their thermal parameters (Table 6), the fluorine atoms are disordered. A difference Fourier map did not give other possible positions for the fluorine atoms. All parameters shifts in the final cycle were smaller than their e.s.d.'s. The final conventional R-value was 0.052 (on 3858 reflections) *. The atomic scattering factors were those of the neutral atoms [32]. Those of Ir were corrected for the real and imaginary part of the anomalous dispersion. All calculations were carried out on an IBM 370/158 computer with the X-ray system of crystallographic programs [33].

Results and discussion

Positional and thermal parameters are listed in Tables 5 and 6. Structural parameters derived from the X-ray data are presented in Table 7. Because of the unreliability of the fluorine positions, the bond distances and angles of the $\mathrm{BF}_{4}{ }^{-}$ion are not given. The configuration of the $\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$ion is given in Fig. 2. The X-ray structure analysis confirms the η^{2}-coordination of both SCNMe_{2} groups. In both SCNMe_{2} moieties, the $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ distance, the $\mathrm{S}-\mathrm{C}-\mathrm{N}$ angle and the angles within the $\mathrm{Ir}-\mathrm{C}-\mathrm{S}$ ring are not significantly different from those in other η^{2}-SCNMe 2 groups, coordinated rhodium(III), molybdenum(IV) and manganese(I) [8-10]. The $\mathrm{Ir}-\mathrm{C}$ distances observed for the SCNMe_{2} groups fall at the low end of the range observed for $\mathrm{Ir}^{111}-\mathrm{C}_{s p}{ }^{2}$ bonds (1.982.06 A) [16-18], and are significantly longer than the Ir CO distance in the same complex. The Ir -S distances are longer than other $\mathrm{Ir}^{\mathrm{III}}-\mathrm{S}$ distances observed before, e.g. in $\operatorname{Ir}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ the average $\mathrm{Ir}-\mathrm{S}$ distance is $2.36 \AA$ [39].

Both IrSCNMe 2_{2} units are virtually planar. The largest deviation from the leastsquares plane through the atoms $\mathrm{Ir}, \mathrm{S}(1), \mathrm{C}(1), \mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3)$ (plane I) is 0.07 A for $C(3)$, and the largest deviation from the least-squares plane through $I r, S(2)$, $\mathrm{C}(4), \mathrm{N}(2), \mathrm{C}(5)$ and $\mathrm{C}(6)$ (plane II) is $0.04 \AA$ for $\mathrm{C}(4)$. Both $\mathrm{IrSCNMe}_{2}$ units are oriented approximately perpendicular to each other (the angle between plane I and plane Π is 85.5°) and roughly perpendicular to the least-squares plane through P, Ir, C(7) and O (plane III). The angle between the planes I and III is 74.3° and between the planes II and III 81.9°. The Ir -P bond is approximately situated in plane I (distance of P from this plane, $0.3 \AA$) and the carbonyl group is situated in plane II (distances from this plane, $\mathrm{C}(7) 0.02 \AA ; \mathrm{O} 0.03 \AA$). The orientations of the SCNMe_{2} groups in plane I and plane II relative to the Ir -P and the Ir CO bond respectively are given in Fig. 3. We suggest to describe the observed geometry as octahedral, distorted by the ring-strain within both Ir-C-S rings.

The coordinating CS bond of $\left(\mathrm{SCNMe}_{2}\right)_{1}$ is located beneath least-squares plane III (C(1) $-0.81 ; \mathrm{S}(1)-2.21 \AA$) and the CS bond of $\left(\mathrm{SCNM}_{2}\right)_{\mathrm{II}}$ is located above this

[^3]TABLE 5
FINAL ATOMIC COORDINATES FOR THE NON-HYDROGEN ATOMS WITH STANDARD DEVIATIONS IN PARENTHESES

Atom	x	\boldsymbol{y}	z	
Ir	0.10648(4)	0.11478(2)	0.15255(3)	
S(1)	-0.1600(3)	0.0981(2)	$0.1164(3)$	
S(2)	$0.1681(4)$	0.0290(2)	0.0638(3)	
P	0.2564(3)	0.0669(2)	0.2990(2)	
0	$0.1563(15)$	$0.2454(6)$	0.2305(9)	
N(1)	-0.1436(10)	0.1563(4)	-0.0372(6)	
N(2)	$0.3525(15)$	0.1252(6)	0.0669 (9)	
C(1)	-0.0855(11)	$0.1334(5)$	0.0459(7)	
C(2)	-0.0540(15)	$0.1873(6)$	-0.0824(9)	
C(3)	-0.3063(16)	$0.1517(7)$	-0.0954(10)	
C(4)	0.2492(13)	$0.1006(5)$	-0.919(8)	
C(5)	0.4019(23)	$0.1894(9)$	0.0938(14)	
C(6)	$0.4198(25)$	$0.0892(10)$	$0.0109(15)$	
C(7)	$0.1369(14)$	$0.1964(6)$	0.2016(9)	
C(81)	$0.4356(11)$	$0.0440(5)$	$0.3019(7)$	
C(82)	$0.5347(14)$	0.0902(6)	0.2961(9)	
C(83)	0.6656(17)	$0.0757(7)$	$0.2906(10)$	
C(84)	$0.7095(20)$	$0.0137(8)$	$0.2912(12)$	
C(85)	$0.6143(18)$	-0.0366(8)	0.2934(12)	
C(86)	0.4729(16)	-0.0192(6)	$0.3007(9)$	
C(91)	$0.2906(12)$	0.1163(5)	0.4026(8)	
C(92)	$0.1672(13)$	0.1480(5)	0.4099(8)	
C(93)	$0.1828(15)$	$0.1831(6)$	0.4891 (9)	
C(94)	$0.3311(18)$	$0.1912(7)$	$0.5596(11)$	
C(95)	$0.4438(16)$	$0.1613(7)$	$0.5510(10)$	
C(96)	$0.4321(14)$	$0.1239(5)$	$0.4703(9)$	
C(101)	$0.1704(12)$	-0.0044(5)	$0.3263(7)$	
C(102)	0.0665(14)	-0.0387(6)	$0.2544(8)$	
C(103)	0.0044(16)	-0.0936(7)	$0.2758(10)$	
C(104)	0.0400(23)	-0.1114(8)	$0.3665(14)$	
C(105)	$0.1485(20)$	-0.0780(8)	$0.4405(12)$	
C(106)	0.2137(20)	-0.0238(7)	0.4181(11)	
B	0.722(2)	0.760(1)	0.180 (2)	
F(1)	$0.671(3)$	0.720(2)	$0.109(2)$	
F(2)	0.868(2)	0.756(1)	0.196(3)	
F(3)	0.688(3)	0.817(1)	0.167(2)	
F(4)	0.729(3)	0.728(2)	$0.255(2)$	

plane $(C(4)+1.86 \AA ; S(2)+1.21 \AA)$. The orientation of the two $C S$ bonds relative to the plane defined by the metal and the two other donor atoms in the 18 electron Ir complex, is different from that observed for the two coordinating CC bonds in the 16 electron Rh complex, $\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{Me}_{2} \mathrm{CCCMe}_{2}\right)_{2}$ [34]. In this complex the $\mathrm{Rh}\left(\eta^{2}-\mathrm{Me}_{2} \mathrm{CCCMe}_{2}\right)$ planes also are roughly perpendicular to each other and to the plane formed by Rh and the two donor atoms of the acetylacetonato ligand. But now each coordinating CC bond is intersected by this latter plane, so that for each coordinating $C C$ bond one C atom is situated above and one below this plane. To define the structural difference: if $\eta^{2}-\mathrm{SCNMe}_{2}$ and η^{2} $\mathrm{Me}_{2} \mathrm{CCCMe}_{2}$ in the two complexes are both seen as bidentate, the 16 electron Rh complex is best described as distorted trigonal prismatic, whereas the 18 electron Ir complex is best described as distorted octahedral.

TABLE 6
THERMAL PARAMETERS $\times 10^{2}$ FOR THE NON-HYDROGEN ATOMS
Thernal paraneters are expressed in the form T exp $\left[-2 \pi^{2} U_{11} h^{2} a_{\star} 2+U_{22} k^{2} b^{\star 2}+U_{33} I^{2} c^{\star 2}+\right.$ $\left.U_{1} 2^{h k} a^{\star} b^{t}+U_{13} h_{i} a^{\star} c^{\star}+U_{23} k l b^{\star} c^{\dagger}\right) 1$ where the $U_{i j}$ values are in A.

TABLE 7

Coordination of the iridium				
Ir -S(1) 2.465(3)	Ir-P	2.391 (2)	Ir-C(4)	1.961(15)
$\underline{r}-\mathrm{S}(2) \quad 2.469(4)$	Ir-C(1)	2.005(9)	Ir-C(7)	1.860(12)
$\mathrm{S}(1)-\mathrm{Ir}-\mathrm{S}(2)$ 102.9(1)	S(1)-Ir-C(7)	102.6(5)	$\mathrm{P}-\mathrm{Ir}-\mathrm{C}(4)$	95.0(3)
$\mathrm{S}(1)-\mathrm{Ir}-\mathrm{P}$ 111.8(1)	S(2)-Ir-C(1)	92.4(3)	$\mathrm{P}-\mathrm{Ir}$-C(7)	93.8(4)
$\mathrm{S}(2)-\mathrm{Ir}-\mathrm{P} \quad 90.8(1)$	S(2)-Ir-C(4)	42.9(4)	C(1)-Ir-C(4)	105.0(5)
S(1)-Ir-C(1) 42.6(4)	S(2)-Ir-C(7)	150.2(5)	C(1)-Ir-C(7)	96.0(5).
S(1)-Ir-C(4) 138.1(3)	P-Ir-C(1)	154.1(4)	C(4)-Ir-C(7)	107.3(6)
The thiocarboxamido ligand (SCNMe $\left.{ }_{2}\right)_{\text {I }}$				
$S(1)-C(1) \quad 1.681(12)$	N(1)-C(1)	1.28(2)	$N(1)-C(2)$	1.46(2)
$N(1)-C(3) \quad 1.50(2)$	Ir-S(1)-C(1)	53.9(3)	$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{S}(1)$	83.5(4)
Ir-C(1)-N(1) 144(1)	$S(1)-C(1)-N(1)$	132.0(9)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	121.5(9)
$C(1)-N(1)-C(3) 123(1)$	C(2)-N(1)-C(3)	116(1)		
The thiocarboxamido ligand (SCNMe ${ }_{2}$) II				
$\mathrm{S}(2)-\mathrm{C}(4)$ 1.688(11)	$\mathrm{N}(2)-\mathrm{C}(4)$	1.31(2)	N(2)-C(5)	1.45(2)
$N(2)-C(6) \quad 147(3)$	$\mathrm{Ir}-\mathrm{S}(2)-\mathrm{C}(4)$	$52.3(5)$	Ix-C(4)-S(2)	84.8(6)
$\mathrm{Ir}-\mathrm{C}(4)-\mathrm{N}(2)$ 146.6(9)	$S(2)-C(4)-N(2)$	128(1)	C(4)-N(2)-C(5)	120(2)
$\mathbf{C}(4)-\mathrm{N}(2)-\mathrm{C}(6) 121(2)$	$C(5)-N(2)-C(6)$	119(2)		
Coordination of the phosphorus				
P -C(81) $\quad 1.80(2)$	P-C(91)	1.82(2)	$P-C(101)$	1.85(2)
Ir-P-C(81) 112.6(4)	$\underline{T}-\mathrm{P}-\mathrm{C}(101)$	112.9(3)	$\boldsymbol{C}(81)-\mathrm{P}$ C(101)	102.9(5)
$\mathrm{Ir}-\mathrm{P}-\mathrm{C}(91) \quad 114.9(3)$	$C(81)-\mathrm{P}-\mathrm{C}(91)$	105.9(5)	C(91)-P-C(101)	106.9(5)
Carboinyl				
$\mathrm{C}(7)-0$ 1.117(17)	Ir-C(7)-0	179(2)		

Fig. 2. The configuration of the $\left[\operatorname{Ir}\left(\eta^{2}-\mathrm{SCNMe}_{2}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$ion.

Fig. 3. The orientation of $\left(\mathrm{SCNMe}_{2}\right)_{I}$ and (SCNMe $)_{\text {II }}$ in plane I and plane II relative to the Ir- P and the Ir-CO bond respectively.

Acknowledgements

Abstract

We thank Prof. Dr. Ir. J.J. Steggerda for his continuous interest and useful discusssions, Mr. P.J.J. Koonen for performing C, H, N analyses, Mr. H.H.K. Brinkhof for recording some of the 'H NMR spectra, Dr. J.W.M. van Kessel for recording ${ }^{31}$ P NMR spectra and Mr. J.J.M. Smits and Mr. J.H. Noordik for the X-ray intensity measurements. The investigations were supported in part by the Netherlands Foundation for Chemical Research (SON), with financial aid from the Netherlands Organization for Pure Research (ZWO).

References

1 A.W. Gal, A.F.M.J. van der Ploeg, F.A. Vollenbroek and W. Bosman, J. Organometal. Chem., 96 (1975) 123 and ref. cited therein.
2 E.R. Grundy and W.R. Roper. J. Organometal. Chem., 113 (1976) C45.
3 MI.C. Baird and G. Wilkinson, J. Chem. Soc. A. (1967) 865.
4 D. Commereuc, I. Douek and G. Wilkinson, J. Chem. Soc. A, (1970) 1771.
5 F.R. Grundy, R.O. Harris and W.R. Roper, J. Organometal. Chem., 90 (1975) C34.
6 T.J. Collins, W.R. Roper and K.G. Town. J. Organometal. Chem., 121 (1976) C41.
7 G.R. Clark, T.J. Collins, S.M. James and W.R. Boper, J. Organometal. Chem., 125 (1977) C23.
8 W. Bosman and A.W. Gal, Cryst. Struet. Comm., 4 (1975) 465 and 5 (1976) 703.
9 W.K. Dean. J.B. Wetheringt on and J.W. Moncrief, Inorg. Chem.. 15 (1976) 1566.
10 L. Ricard, J. Estienne and R. Weiss, Inorg. Chem., 12 (1973) 2182.
11 S.K. Porter, H. White, C.R. Green, R.J. Angelici and Jon Clardy, Chem. Commun., (1973) 493.
12 T. Kashiwagi, N. Yasuoka. T. Ueki. N. Kasai and M. Kakudo, Bull. Chem. Soc. Japan, 41 (1968) 296.
13 F. Mason and A.I.M. Rae, J. Chem. Sac. A, (1970) 1767.
14 C.R. Green and R.J. Angelici, Inorg. Chem., 11 (1972) 2095.
15 A. Corain and M. Martelli, Inorg. Nucl. Chem. Letters, (1972) 39.
16 J.R. Blickensterfer, G.B. Knobler and H.D. Kaesz. J. Amer. Chem. Soc. 97 (1975) 2686.
17 D.R. Russel and P.A. Tucker, J. Chem. Soc. Dalton, (1975) 1749.
18 F.W.B. Einstein. A.B. Gilchrist, G.W. Rayner-Canham and D. Sutton, J. Amer. Chem. Soc., 94 (1972) 645.

19 J.J. Levinson and P. Robinson, J. Chem. Soc. A, (1970) 2947.
20 A. van der Ent and A.L. Onderdelinden, Inorg. Synth., 14 (1973) 94.
21 E.J. Ritter, United-States Patent Office, Patented Oct. 3 (1950) nr. 2.524.081.
22 E. Hmaier and R.S. Nyholm. Naturwissenschaften, 56 (1969) 415.
23 J.R. Gaylor and C.V. Senoff, Can. J. of Chem., 10 (1972) 1668.
24 S.D. Robinson and A. Sahajpal, J. Organometal. Chem., 99 (1976) C65.
25 T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev.. 10 (1973) 335.
26 1. Vaska and J. Peone, Chem. Commun., (1971) 418.
27 T. Gaines and M. Roundhill. Inorg. Chem.. 13 (1974) 2521.
28 B. Cetinkay, M.F. Lappert and P. Dirneuf, J. Chem. Soc. Dalton, (1974) 1827.
29 D.J. Cardin, M.J. Doyle and M.F. Lappert. J. Organometal. Chem., 65 (1974) C13.
30 E.D. Dobrzynski and R.J. Angelici, Inorg. Chem., 14 (1975) 1513.
31 R.O. Gould. Th. v.d. Hark and P.T. Beurskens, Acta Cryst. A, 31 (1975) 813.
32 D. Cromer and J. Mann, Acta Cryst. A, 24 (1968) 321:
33 The X-ray System. Technical Report TR-192 of the Computer Science Center, University of Maryland. College Park, Md. June 1972.
34 T.G. Hewitt and J.J. De Boer. J. Chem. Soc. A. (1971) 818.
35 A.L. Onderdelinden and A. van der Ent, Inorg. Chim. Acta, 7 (1973) 203.
36 K. Vrieze, J.P. Collman, C.I. Sears, Jr. and M. Kubota, Inorg. Synt., 11 (1968) 101.
37 H.L.M. van Gaal and J.P.J. Verlaan, J. Organometal. Chem., 133 (1977) 93.
38 F.L. Bowden and R. Giles, Coord. Chem. Rev., 20 (1976) 81.
39 C.L. Raston and A.H. White, J. Chem. Soc. Dalton. (1976) 32.

[^0]: * cis and trans indicate relative positions of PPh_{3} groups.

[^1]: cls and trans indicate relative positions of PPh_{3} groups, ${ }^{\boldsymbol{b}}$ Isomer A: H trans to S; Isomer B: H trans to $\mathrm{C},{ }^{c}$ IR absorptions obtalned from a mixture of IV and V (see ${ }^{d}$ Experinental). ${ }^{d}$ Characterized only by IR. ${ }^{\text {c }}$ Prepared according to [15]. f Prepared according to [14],

[^2]: and cis indicate relative positions of PPh_{3} groups, ${ }^{c}$ Detween angles: number of protons determined from relative intensity to Ph resonances. ${ }^{\prime}$ A and B are two dif. ferent isomers. A: H trans to S. B: H trans to C. ${ }^{[}$From ${ }^{1}$ II NMR, ${ }^{\text {h }}$ Broadened singlets. ${ }^{\text {' Prepared according to [4]. }}$

[^3]: * A list of the structure factors can be obtained from the authors on request.

